

VEパネル (Vitreous Enameled Panels)

目 次

			Page
1.	VEパネル	レとは	1
2.	特徴	••••	4
3.	パネル種	類	12
4.	設 計	••••	17
5.	工 程	• • • •	20
6.	写真	• • • •	21

VEパネルとは、鋼板表面にエナメルコーティング(琺瑯処理)を施したパネル材のことです。フリット等のガラス成分を吹きつけ後、850度の炉の中で焼き付けることによって製造されます。

2011年に製造メーカーであるCeratec社(香港)から、独占販売権を取得しました。製造はCeratec社の台湾工場にて行われます。鋼板は新日鉄材、ガラス材は東洋ガラス製を使用しています。

<概要>

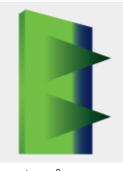
1. 製作図の 作成

2. 鋼板の カット

3. 曲げ作業

4. コーナー 部の溶接

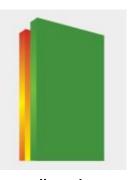
5. パネル の化学洗浄


6. 下塗り

7. 温風(200 ~300度)によ る乾燥

8. 予熱(400度)

9. トップコー ティング(1~2 層)&グラフィッ クシートのプリン


10.乾燥(コー ティング数に 合わせて繰り 返し)

<概要>

11.焼付け (850度)

12.背面処 理

13.最終検 査・梱包・出 荷

出荷時荷姿

2. 特 徵

他の建築資材に比べて・・・

- 汚れが付きにくく、清掃が容易。傷にも強い。
- パネルの柄は様々な色・絵・写真にも対応。
- 屋内採用の場合、高い光沢度により蛍光灯数の低減が可能。
- 衛生的な抗菌処理。
- ・ 背面処理も多様(ハニカム形式による遮音効果等)

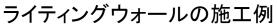
⇒ ライフサイクルコストの大幅低減が可能

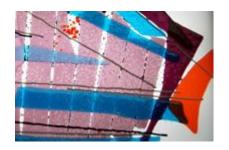
留意点

長所

- その他の建築資材と比べて、重量が大きい。
 - ※アルミパネルに比べて重量が大きく感じますが、実際はアルミパネルも裏打ちが必要になるため、そこまで大きな重量差はありません。
- ・イニシャルコストが多少高くなるため、トータルコストメリットの点から検討が必要。

VEパネルの特徴(1)


- ・鋼板表面をガラスコーティングすることで、傷、汚れが付きにくく、たとえ落書きをされても、 洗浄剤を付け、軽く擦るだけで容易に消去することが可能です。
- 傷や汚れが気になる建物エントランス部等への採用がお勧めです。



VEパネル(川田工業/建築事業部)

VEパネルの特徴(2)

- ・パネルの柄は様々な色・絵・写真にも対応が可能で、特殊なグラフィックを採用しても性能は変わりません。
- ・ほぼ全ての色に対応可能です。(RAL規格には全色対応しています)

VEパネルの特徴(3)

・屋内に採用した場合、高い光沢度により蛍光灯数の低減が可能です。

VEパネルの特徴(4)

- ・抗菌処理により、非常に衛生的です。
- ・手術室等への採用も可能です。

VEパネルの特徴(5)

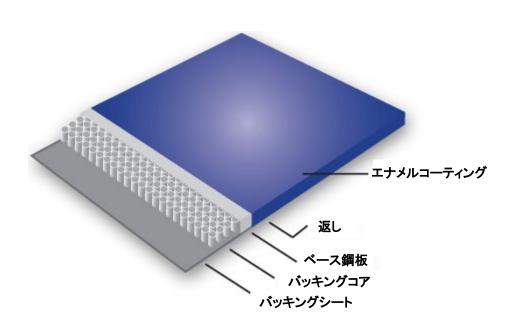
- 背面処理も多様で、ハニカム構造やケイカル板等の処理が可能です。
- ・ハニカム構造にした場合、遮音効果が大きくなります。

表面

背面(ハニカム形式の例)

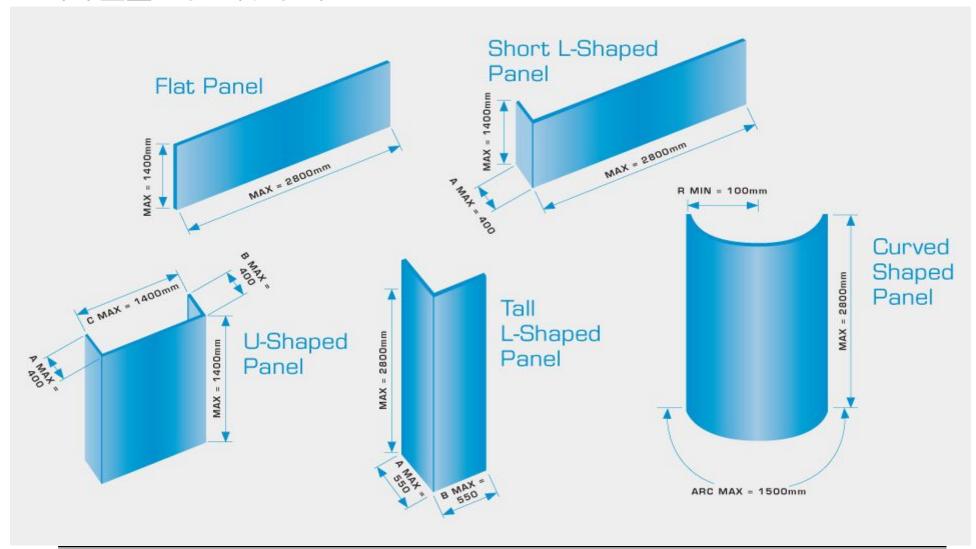
VEパネルの特徴(6)

<建築資材の比較>


建築資材比較	VEパネル	GRC	アルミ	タイル	天然石
色あせ	0	×	×	Δ	×
化学抵抗	0	0	×	タイル○, グラウト×	×
耐摩耗性	0	×	×	0	×
耐火性	0	0	×	タイル○, グラウト×	×
落書きに対する強さ	0	×	×	タイル○, グラウト×	×
耐衝撃性	0	0	×	Δ	×
UV抵抗	0	×	×	タイル〇, グラウト△	×

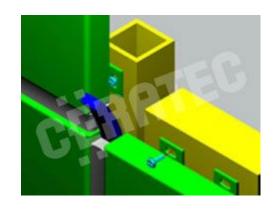
No	テスト基準	テスト種類	テスト結果
1	BS 476: Part 4: 1970	非燃焼性試験	分類: 非可燃物
2	BS 476: Part 6: 1989	火災伝播試験	火災伝播インデックス I = 0; サブインデックス i1, i2, i3 = 0
3	BS 476: Part 7: 1997	燃焼時表面拡散試験	分類: クラス1
4	BS 1344 Part 1	コーティングの熱衝撃試験	Satisfactory
5	BS 1344: Part 2; ISO 2722:1973	クエン酸抵抗	クラス AA
6	BS 1344 Part 3	硫酸抵抗	クラス AA (白色パネル試験)
7	BS 1344:1968: Part 4	摩擦抵抗	ロス率 = 0.00963 g/min
8	BS 1344: Part 5: 1984	洗浄液に対する抵抗	Satisfactory
9	BS 1344: Part 6: 1988	アルカリ抵抗	Satisfactory
10	BS 1344 Part 7: 1984	熱抵抗	表面損傷なし
11	BS 1344: Part 8: 1984; ISO 2742:1983	クエン酸(沸騰)に対する抵抗	ロス率 = 15.1g/m2 (テスト時間: 2.5時間)
12	BS 1344: Part 9: 1987	沸騰水に対する抵抗	Satisfactory
13	BS 1344: Part 10: 1987	塩酸蒸気テスト	Satisfactory
14	BS 1344: Part 17: 1975; ISO 2745: 1998	水酸化ナトリウム溶液に対する抵抗	Satisfactory
15	BS 1344: Part 21: 1993	衝撃性(ピストル)試験	多少の剥離あり
16	ASTM B117 - 97	塩水噴霧試験(1000時間)	変化なし
17	ASTM E350-95 and Laboratory In house Method	カーボン、マンガン、リン、硫黄の成分試験	カーボン < 0.01%; マンガン: 0.24%; リン: 0.009%; 硫黄: 0.008%
18	BS 4360:1986	溶接構造向け鋼グレード43Aの引張強度試験	規格に準拠
19	BS 1449: Part1: 1983	低炭素鋼の引張強度試験	BS1449 グレードCR4に準拠
20		耐摩耗性試験	硬度 = 6
21	BS EN 10209:1996	エナメルコーティングの付着レベルの測定	付着レベル1
22	BS 3900:D5:1997; BS EN ISO 2813:2000	表面光沢度 (60 degrees)	平均 95%
23	ASTM C 423 - 02	吸音性	規格に準拠

(1)重量パネル(鋼板厚さ1mm、1.2mm、1.6mm、2mm)



パーツ構成:
エナメルコーティング : 175~350 ミクロン
返し: 25~40mm
ベース鋼板: 厚み1mm、1.2mm、1.6mm、2mm
バッキングコア: 設計条件に合わせて、ハニカム、ケイカル板、 石膏ボードを選択
バッキングシート: 厚さ0.5mmのメッキシート等を使用

重量					
鋼板厚さ	mm	1,2	1,6	2,0	
背面処理なし	kg/m2	9,5	12,5	15	
背面処理あり	kg/m2	15-22	18-25	20-32	

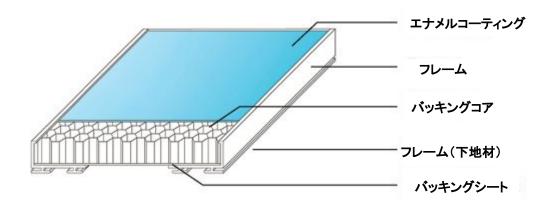

(1)重量パネル(サイズ)

VEパネル(川田工業/建築事業部)

(1)重量パネル(ジョイント例)

シリコンジョイント:

水の浸入を防止する際に使われる タイプです。 パネル間の隙間は20mm程度、パ ネル深さ30mm程度必要となりま す。


ガスケットジョイント: パネルの隙間は10mm~30mm程 度必要となります。

オープンジョイント: パネル間の隙間は10mm程度必 要となります。

(2)軽量パネル(鋼板厚さ0.7mm)

パーツ構成:

エナメルコーティング: 175~350ミクロン

ベース鋼板: 厚さ0.7mm

バッキングコア:設計条件に合わせて、ハニカム、ケイカル板、石膏ボード

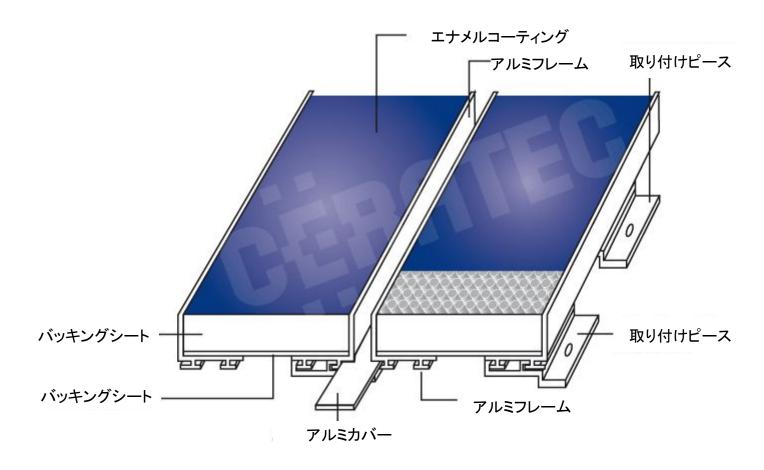
を選択

バッキングシート: 厚さ0.5mmのメッキシート等

フレーム: アルミニウムフレーム使用

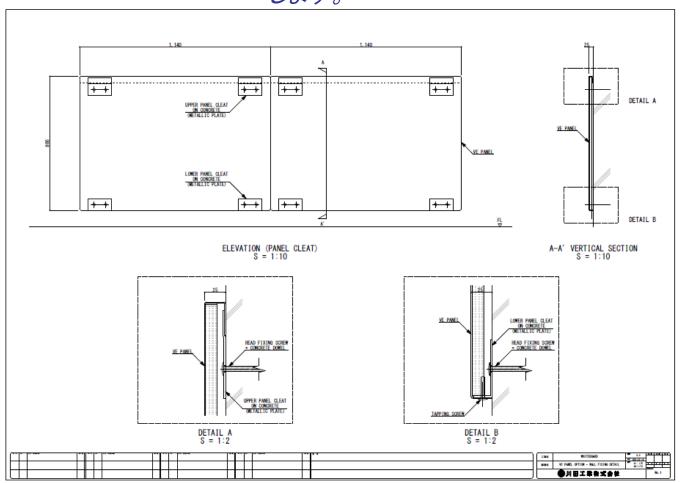
パネルサイズ及び重量:

長さ: 2800mmまで

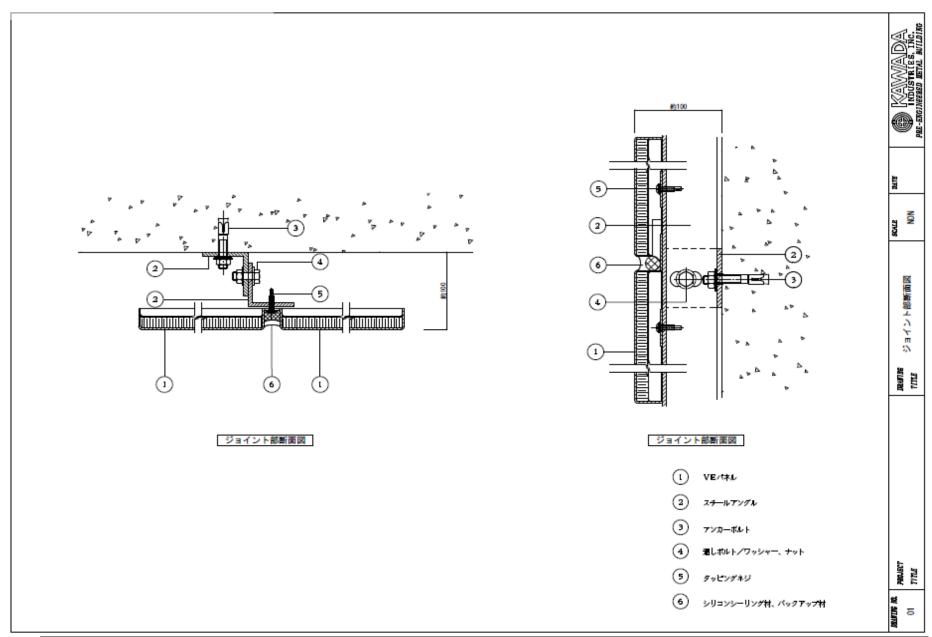

幅: 1400mmまで

フラットパネルのみ

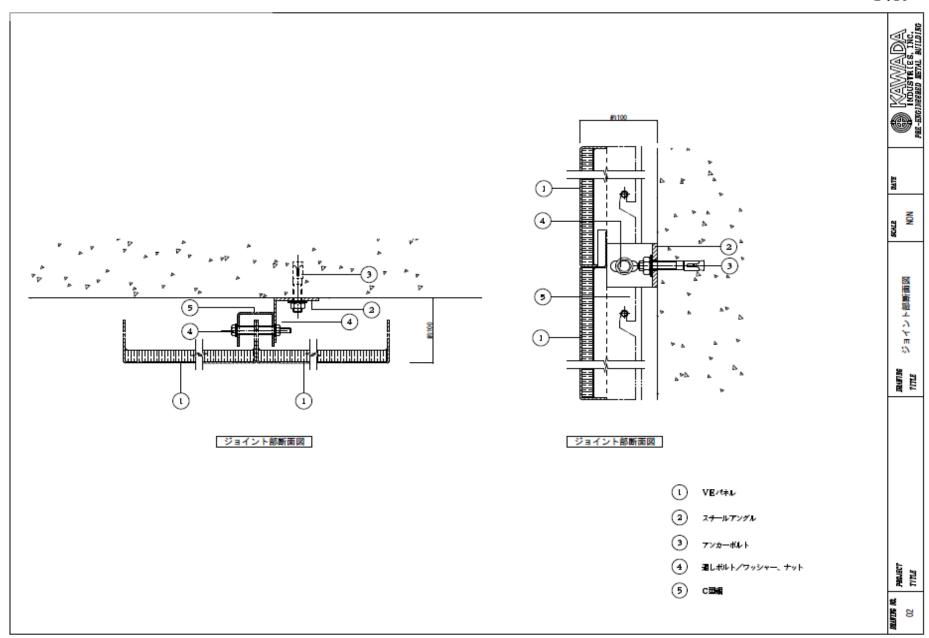
重量: 12mmのケイカル板使用時: 21kg/m2



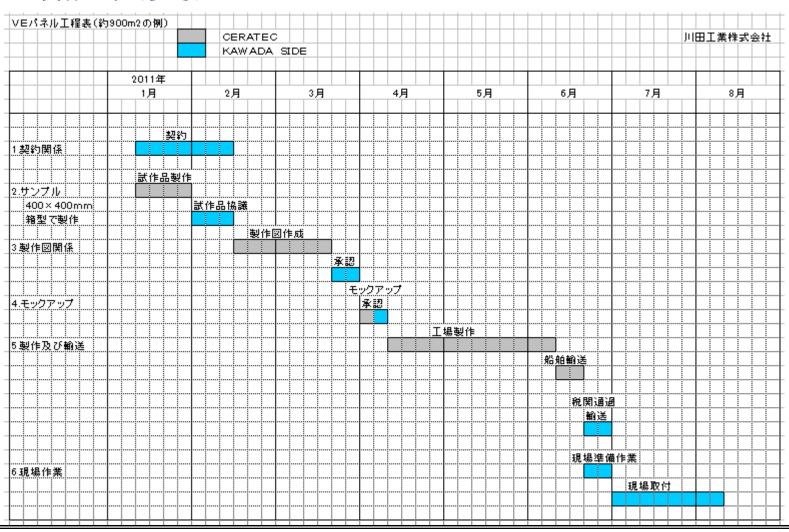
(2)軽量パネル(ジョイント例)



- 構造設計
- ← 設計者様にて御対応願います。
- ジョイント部設計 ← 施主様・設計者様のご意向に合わせて川田にて協力致 します。



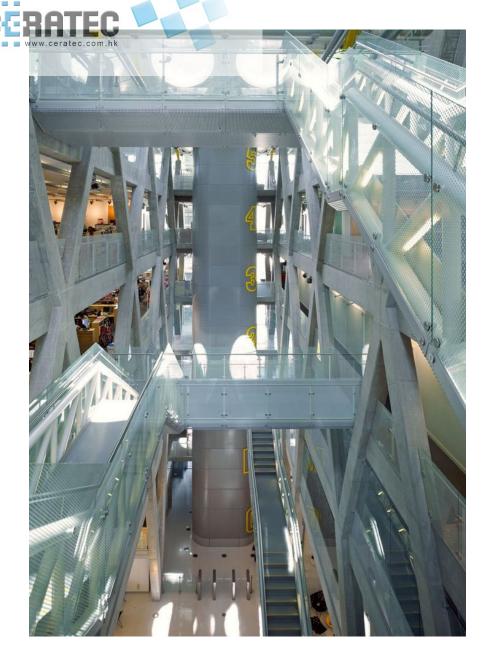
VEパネル(川田工業/建築事業部)



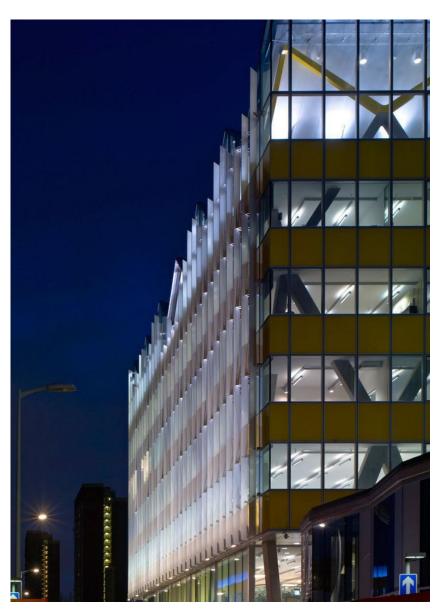
VEパネル(川田工業/建築事業部)

●製作工程(参考)

London – Residential Building



Hong Kong MTR - Tsuen Wan Station

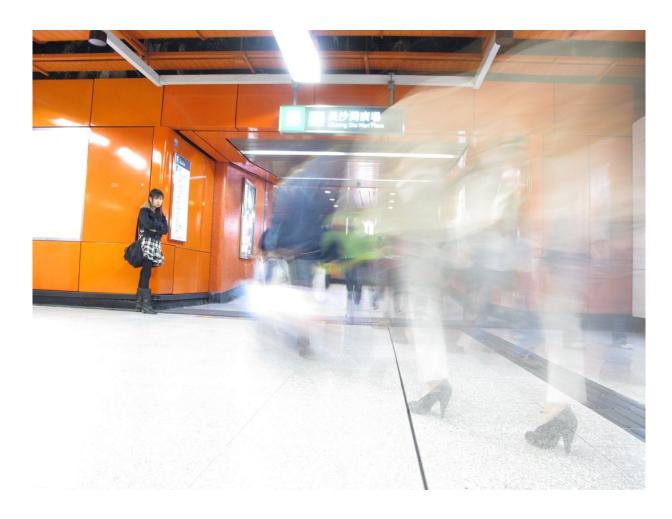


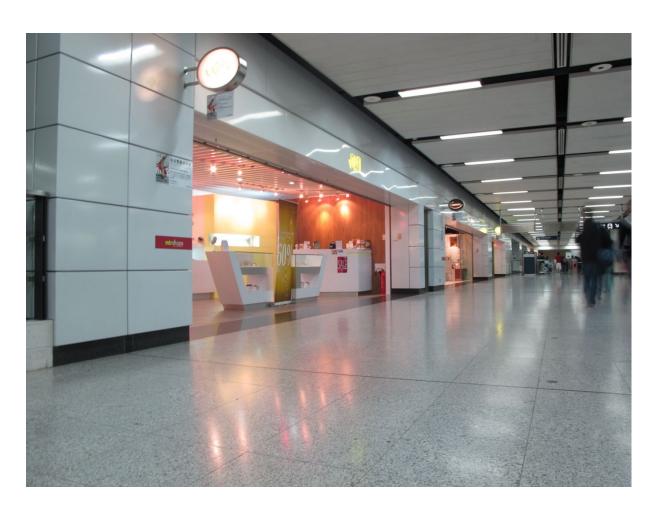
Italy – Commercial Building

London – Commercial Building

VEパネル(川田工業/建築事業部)

Germany – Commercial Building


London – Residential Building


Hong Kong MTR - Yuen Long Station

Hong Kong MTR - Lai Chi Kok Station

Hong Kong MTR – Central Station

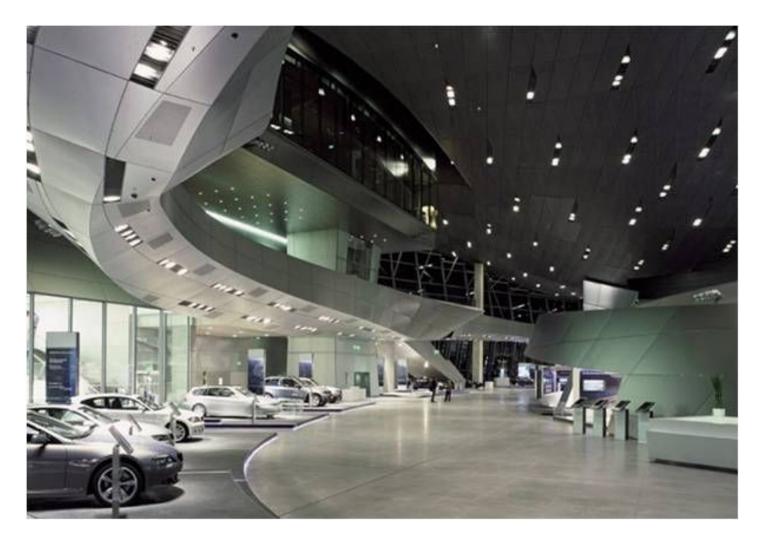
Hong Kong MTR – Olympic Station

Taiwan – Mass Transit Railway

France – Mass Transit Railway

France – Mass Transit Railway

Hong Kong MTR – Cheung Sha Wan



Hong Kong – Mass Transit Railway

Germany – Commercial Building

Germany – Commercial Building

London – Commercial Building